Prediction of transition probability from unemployment to employment in Argentina (2003-2019)
Keywords:
Gender; Employment; Inequality; Machine Learning.Abstract
Despite their growing participation in the labor market, women who decide to go out and look for a job face greater difficulties in obtaining it. The participation of women in the labor force is considerably lower, even if entering the labor market the possibility of actually finding a job is also less than the chance that men have of doing so (CIPPEC, 2019). Being able to predict the probability of occupational insertion of men and women, and inquire about the factors that influence this probability, is essential in order to understand gender gaps in the labor market, helping to improve the design and implementation of public policies with a gender perspective, with the final goal to achieve equality of opportunities. In this framework, the present work will seek to predict the probability of transition from unemployment to the employment in Argentina from 2003 to 2019, using the Permanent Household Survey, based on traditional prediction techniques and Machine Learning, with the objective to find the most robust model that achieves the highest level of accuracy.References
Banco De Desarrollo de América Latina (CAF). (2019). Brechas de Género en América Latina. Un Estado de Situación. CAF.
Beccaria, L., Maurizio, R., Trombetta , M., & Vázquez, G. (2016). Una evaluación del efecto scarring en Argentina. Buenos Aires: Revista Desarrollo y Sociedad.
Centro de Implementación de Políticas Públicas para la Equidad y el Crecimiento (CIPPEC); Organización de las Naciones Unidas . (2019). El Género del Trabajo. Buenos Aires: Fundación CIPPEC.
Cerruti Marcela. (2000). Determinantes de la participación intermitente de las mujeres en el mercado de trabajo del Area Metropolitana de Buenos Aires. Buenos Aires: Desarrollo Económico, Vol. 39, No. 156 (Jan. - Mar., 2000), pp. 619-638.
Fabrizi, E., & Mussida, C. (2009). The Determinants of Labour Market Transitions. Giornale degli economisti e annali di economia.
Favata, F. (2020, junio). Duración del desempleo en Argentina (2003-2019).
Freeman, R., & Ballen , J. (1986). Transitions between Employment and Nonemployment.
Friedman, J., Hastie, T., Narasimhan, B., Tay, K., Simon , N., & Qian, J. (2020). Package ‘glmnet’: Lasso and Elastic-Net Regularized Generalized Linear Models.
Goldin, C. (2006). The Quiet Revolution That Transformed Women’s Employment, Education, and Family. American Economic Review, 96(2), 1–20.
Instituto Nacional de Estadísticas y Censos . (2003). La Nueva Encuesta Permanente de Hogares de Argentina. . Buenos Aires: INDEC.
Instituto Nacional de Estadísticas y Censos . (2011). Encuesta Permanente de Hogares. Conceptos de Condición de Actividad, Subocupación Horaria y Categoría Ocupacional. Buenos Aires.
Iturriza , A., Bedi, A. S., & Sparrow, R. (2008). Unemployment Assistance and Transition to Employment in Argentina. IZA.
James, G., Witten, D., Hastie, T., & Tibshirani. (2013). An Introduction to Statistical Learning. Springer.
Kütük, Y., & Güloglu, B. (2019). Prediction of Transition Probabilities from Unemployment to Employment for Turkey via Machine Learning and Econometrics: a Comparative Study . Istanbul: İktisat Araştırmaları Dergisi • Journal of Research in Economics; ss/pp. 58-75.
Ministerio de Trabajo, Empleo y Seguridad Social . (2018). Las Mujeres en el Mundo del Trabajo. Buenos Aires: Presidencia de la Nación Argentina.
Mullainathan , S., & Spiess, J. (2017). Machine Learning: An Applied Econometric Approach . Journal of Economic Perspectives—Volume 31, Number 2—Spring 2017—Pages 87–106.
Mussida, C., & Fabrizi , E. (2009). The Determinants of Labour Market Transitions.
Pereira, J., Basto, M., & Ferreira da Silva, A. (2016). The logistic lasso and ridge regression in predicting corporate failure. Procedia Economics and Finance 39 634 – 641.
Russell, H., & O'Connell, P. J. (2001). Getting a Job in Europe: The Transition from Unemployment to Work among Young People in Nine European Countries. The Economic and Social Research Institute, 1-24.
Varian , H. (2014). Big Data: New Tricks for Econometrics . Journal of Economic Perspectives—Volume 28, Number 2—Pages 3–28.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Agustín Staudt, Juan Luis Heredia
The works published in this magazine are under the Creative Commons Attribution-NonCommercial 2.5 Argentina license.
Important: The author is the owner of the rights to exploit the contents of the article of his authorship.
You are free to:
Share — copy and redistribute the material in any medium or format.
Adapt — remix, transform and build from the material.
The licensor cannot revoke these liberties as long as you follow the terms of the license.
Under the following terms:
Attribution - You must give appropriate credit, provide a link to the license, and indicate if any changes have been made. You may do so in any reasonable way, but not in a way that suggests that you or your use is endorsed by the licensor.
Non-Commercial - You may not use the material for commercial purposes.
There are no additional restrictions - You cannot apply legal terms or technological measures that legally restrict others to make any use permitted by the license.