The tourist demand of the hotel chain. Time series for a forecast model

Authors

Keywords:

Tourist demand; Efficacy; Efficiency; Time series.

Abstract

In an increasingly uncertain world where world dynamics accelerates the way of managing processes in any sector, the forecast of tourist demand becomes very important. In this sense, the present research aims to forecast the tourist demand of the Cuban Hotel Chain of Pinar del Río, Cuba, until December 2019, through the use of time series techniques, which facilitate planning and decision-making. in this sector and in this way work towards the achievement of an integration in the productive chains, considering that tourism is one of the socioeconomic activities that activates many other sectors of production and services, as well as predicting the behavior of tourism. For this, the quantitative research method was used as the guiding method, based on the Box - Jenkins methodology and the Holt - Winters exponential smoothing method. It is also possible to characterize tourism management taking into consideration two indicators: cost per weight and average income per tourist, referring to efficiency and effectiveness respectively. In addition, a multivariate analysis of time series was carried out that made it possible to characterize the tourist activity in four fundamental stages in the hotel chain taken as the object of study.

Author Biographies

Reinier Fernández López, University of Pinar del Río Hermanos

Industrial Engineer from the University of Pinar del Río "Hermanos Saíz Montes de Oca" / Upr, Cuba. He is a Master in Industrial Engineering and Systems from the Technological University of Havana "José Antonio Echeverría" / Cujae, Cuba, in 2019. Assistant Professor and researcher of the Department of Mathematics of the Faculty of Technical Sciences at the Upr in the specialty of Applied Mathematics . He is head of the innovation project "Tools for measuring the sustainability and competitiveness of tourist destinations in Pinar del Río". Research line: Applied Mathematics to Tourism Management. ORCID #: 0000-0003-1974-9209

José Alberto Vilalta Alonso, Technological University of Havana

Industrial Engineer. Master in Quality Assurance. He is a Dr. in Technical Sciences from the Technological University of Havana "José Antonio Echeverría" / Cujae, Cuba, in 2008. Professor of the Department of Industrial Engineering of the Faculty of Industrial Engineering of La Cujae. Coordinator of the doctoral program in Industrial Engineering and Systems. He is president of the National Industrial Engineering Career Commission of the Republic of Cuba. Research line: Statistics and Quality Management. ORCID #: 0000-0001-7505-8918

Arely Quintero Silverio, University of Pinar del Río Hermanos

Degree in Economics. He is a Dr. in Technical Sciences from the University of Pinar del Río "Hermanos Saíz Montes de Oca" / Upr, Cuba, in 2001. Professor of the Department of Mathematics of the Faculty of Technical Sciences of the Upr. Postgraduate Methodologist at Upr. Member of the Permanent Tribunal for the granting of the Scientific Degree of Doctor of Technical Sciences (Geology). Research line: Mathematics Applied to Geological Processes. ORCID #: 0000-0003-2951-8957

Ledy Raúl Díaz González, University of Pinar del Río Hermanos

Telecommunications and Electronics Engineer. Master in New Information Technology and Communications from the University of Pinar del Río "Hermanos Saíz Montes de Oca" / Upr, Cuba, in 2007. Assistant Professor of the Department of Mathematics of the Faculty of Technical Sciences of the Upr. Head of the Department of Mathematics of the Faculty of Technical Sciences of the Upr. Research line: Applied Mathematics. ORCID #: 0000-0002-8923-764X

References

Al-Musaylh, M. S., Deo, R. C., Adamowski, J. F., & Li, Y. (2018). Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia. Advanced Engineering Informatics. https://doi.org/doi.org/10.1016/j.aei.2017.11.002

Bakar, N. A., & Rosbi, S. (2017). Autoregressive Integrated Moving Average (ARIMA) Model for Forecasting Cryptocurrency Exchange Rate in High Volatility Environment: A New Insight of Bitcoin Transaction. International Journal of Advanced Engineering Research and Science (IJAERS), 4(11). https://dx.doi.org/10.22161/ijaers.4.11.20

Barbosa, A. J., & Gutiérrez, O. P. (2010). Propuesta de un procedimiento para el análisis de la demanda turística. TURyDES, 3(7).

Box, G. E., Jenkins, G. M., & Reinsel, G. C. (1970). Time Series Analysis: Forecasting and Control. John Wiley & Sons, Inc.

Brown, R. G. (1959). Statistical forecasting for inventory control. McGraw/Hil.

Castillo, L. A. F. (2017). Forecast of the National Index of Consumer Prices. Ricea: Revista Iberoamericana de Contaduría, Economía y Administración, 6(12). https://doi.org/10.23913/ricea.v6i12.95

Castro, A. D., & Fernández, R. M. (2014). Pronóstico de la demanda turística hacia Cuba considerando el impacto del cambio climático. Revista Caribeña de Ciencias Sociales. https://econpapers.repec.org/article/ervrccsrc/y_3a2014_3ai_3a2014_5f08_3a01.htm

Crouch, G. I. (1994). The Study of International Tourism Demand: A Survey of Practice. Journal of Travel Research, 32(4), 41-55. https://doi.org/10.1177/004728759403200408

Cruz-Rodríguez, D. S., & González-Laucirica, Á. M. (2014). Turismo senior: Análisis del comportamiento de las edades de los clientes que visitan el hotel x. varadero, cuba. RES NON VERBA, 5, 11.

Díaz-Pompa, F., Leyva-Fernández, L. de la C., Pérez, O. L. O., & Mulet, Y. S. (2020). El turismo rural sostenible en Holguín. Estudio prospectivo panorama 2030. El Periplo Sustentable, 38, 174-193. https://doi.org/10.36677/elperiplo.v0i38.9265

Feng, Y., Li, G., Sun, X., & Li, J. (2019). Forecasting the number of inbound tourists with Google Trends. Procedia Computer Science, 162, 628-633. https://doi.org/10.1016/j.procs.2019.12.032

Gómez, A. L. S. (2012). El pronóstico de la demanda turística incluyendo variables mercadológicas. Turismo y Desarrollo Local, 12.

Hącia, E. (2019). The role of tourism in the development of the city. Transportation Research Procedia, 39, 104-111. https://doi.org/10.1016/j.trpro.2019.06.012

Holt, C. C. (1957). Forecasting seasonals and trends by exponentially weighted averages. Office of Naval Research.

Jadhav, V., Reddy, B. V. C., & Gaddi, G. M. (2017). Application of ARIMA Model for Forecasting Agricultural Prices. Journal of Agricultural Science and Technology, 19(5), 981-992.

Li, C., Ge, P., Liu, Z., & Zheng, W. (2020). Forecasting tourist arrivals using denoising and potential factors. Annals of Tourism Research, 83, 102943. https://doi.org/10.1016/j.annals.2020.102943

Li, G., Song, H., & Witt, S. F. (2005). Recent developments in econometric modeling and forecasting. Journal of Travel Research, 44(1), 82–99.

Li, S., Chen, T., Wang, L., & Ming, C. (2018). Effective tourist volume forecasting supported by PCA and improved BPNN using Baidu index. Tourism Management, 68, 116-126. https://doi.org/10.1016/j.tourman.2018.03.006

Liu, H., Li, C., Shao, Y., Zhang, X., Zhai, Z., Wang, X., Qi, X., Wang, J., Hao, Y., Wu, Q., & Jiao, M. (2020). Forecast of the trend in incidence of acute hemorrhagic conjunctivitis in China from 2011–2019 using the Seasonal Autoregressive Integrated Moving Average (SARIMA) and Exponential Smoothing (ETS) models. Journal of Infection and Public Health, 13(2), 287-294. https://doi.org/10.1016/j.jiph.2019.12.008

Madrazo, L. M. R., Campdesuñer, R. P., Hernández, M. E. N., & Ferrer, J. G. (2009). Modelo y procedimiento para la gestión de la demanda turística. Ciencias Holguín, 15(3), 1–12.

Milenković, M., Švadlenka, L., Melichar, V., Bojović, N., & Avramović, Z. (2018). Sarima modelling approach for railway passenger flow forecasting. Transport, 33(5), 1113–1120. https://doi.org/10.3846/16484142.2016.1139623

Petrevska, B. (2017). Predicting tourism demand by A.R.I.M.A. models. Economic Research-Ekonomska Istraživanja, 30(1), 939-950. https://doi.org/10.1080/1331677X.2017.1314822

Rahman, A., & Ahmar, A. S. (2017). Forecasting of primary energy consumption data in the United States: A comparison between ARIMA and Holter-Winters models. American Institute of Physics. http://dx.doi.org/10.1063/1.5002357

Song, H., & Li, G. (2008). Tourism demand modelling and forecasting—A review of recent research. Tourism Management, 29(2), 203-220. https://doi.org/10.1016/j.tourman.2007.07.016

Song, H., Qiu, R. T. R., & Park, J. (2019). A review of research on tourism demand forecasting: Launching the Annals of Tourism Research Curated Collection on tourism demand forecasting. Annals of Tourism Research, 75, 338-362. https://doi.org/10.1016/j.annals.2018.12.001

Su, Y., Gao, W., Guan, D., & Su, W. (2018). Dynamic assessment and forecast of urban water ecological footprint based on exponential smoothing analysis. Journal of Cleaner Production, 195, 354-364. https://doi.org/10.1016/j.jclepro.2018.05.184

Winters, P. R. (1960). Forecasting Sales by Exponentially Weighted Moving Averages. Management Science, 6(3), 324-342. https://doi.org/10.1287/mnsc.6.3.324

Wu, D. C., Song, H., & Shen, S. (2017). New developments in tourism and hotel demand modeling and forecasting. International Journal of Contemporary Hospitality Management, 29(1), 507-529. https://doi.org/10.1108/IJCHM-05-2015-0249

Xie, G., Qian, Y., & Wang, S. (2020). A decomposition-ensemble approach for tourism forecasting. Annals of Tourism Research, 81, 102891. https://doi.org/10.1016/j.annals.2020.102891

Published

2020-12-30

How to Cite

Fernández López, R., Vilalta Alonso, J. A. ., Quintero Silverio, A. ., & Díaz González, L. R. . (2020). The tourist demand of the hotel chain. Time series for a forecast model. Scientific Journal Visión De Futuro, 25(1). Retrieved from https://visiondefuturo.fce.unam.edu.ar/index.php/visiondefuturo/article/view/453

Issue

Section

Original Articles

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.